Job Name	Contractor
Job Location	Approval
Engineer	Contractor's P.O. No
Approval	Representative

WM Heavy Duty Bronze Globe Control Valves

The rugged Powers Type WM (mixing bronze body) valve is primarily used for fluid mixing and bypass applications. The WM is not intended for diverting (one inlet, two outlet) applications. The soft seat plug provides tight (class IV) close off. Standard disc material is EP (rubber), teflon is an alternative disc choice for glycol/water and other chemical mixes and/or higher temperature applications. The WM's control and close off characteristics are particularly well-suited to commercial water tempering and industrial applications.

3-Way Mixing, Bronze Body

- 1/2", 3/4", 1", 11/4", 11/2", and 2" Screwed NPT Ends
- ANSI Class 125 or 250 Body Rating
- ANSI Class IV Close off
- Bronze Trim with EP or Teflon Discs
- Quick Opening Flow Characteristic
- 46" Pneumatic Diaphragm Actuator
- Stainless Steel Hardware
- NAMUR Standard Yoke for Accessories

FOWRITEII®

NOTICE

The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.

NOTICE

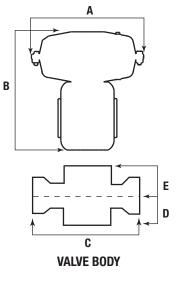
Inquire with governing authorities for local installation requirements

Powers product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Powers Technical Service. Powers reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Powers products previously or subsequently sold.

Dimensional Information

(For other sizes consult factory)

Pneumatic Diaphragm Actuators


ACTUATOR*	А	В	LBS.
46"	10"	10-3/8"	14

Valve Body

SIZE	C	D	E	LBS.
1/2"	2-7/8"	1-3/4"	2-3/8"	2
3/4"	3-3/8"	2-1/8"	2-5/8"	3
1"	3-7/8"	2-7/16"	2-11/16"	4
1-1/4"	4-5/8"	2-5/8"	3-1/16"	6
1-1/2"	5-3/16"	2-7/8"	3-5/16"	8
2"	6-1/4"	3-15/16"	3-8/8"	14

*See Actuator Select Tables on page 5.

PNEUMATIC DIAPHRAGM ACTUATOR

Application

- Body Material and Rating. Bronze body, ANSI Class 125 (½" 1"), ANSI Class 250 (1¼" 2"), screwed NPT ends. Refer to Body Temperature/Pressure Ratings table to insure your application fits in the acceptable operating range. Also determine that the valve body material is compatible with your media.
- Trim Material. Bronze trim is for applications under 50psi.
- Flow Coefficient (CV Rating). Cv to be determined by a specifying Engineer or calculated data. Select a valve size that most closely matches the calculated Cv from the Flowing ΔP, Close Off ΔP, and Cv Ratings table.
- Flowing Pressure Drop (ΔP). To avoid cavitation and its accompanying trim damage, operating ΔP limits should be less than the quantity (0.66 x inlet pressure) + 10psi. Additionally, ΔP should not exceed 50psi.

Body Temperature/Pressure Ratings

ANSI Standard RatingsÑBronze Bodies

Temperature (°F)	Class 125 Lb. (psig)	Class 250 Lb. (psig)
-20 to 150	200	400
200	190	385
250	180	365
300	165	335
350	150	300
400	125	250

- **Piping.** Either as mixing or bypass (not diverting). Upper port is fail closed. (See page 7).
- Actuator Selection. Normal mixing operation requires only sufficient actuator force to fully stroke the valve against the specified ΔP. Three-way applications requiring tight close off against the upper or lower inlet ports require additional actuator force. The 3–15 and 1–17 columns in the Flowing ΔP, Close Off ΔP, and Cv Ratings table apply to valves with control signals coming directly from I/P transducers. The 0–30 column applies to valves using Accritem[®] type pneumatic controllers or valves equipped with a positioner or 0–30 PSI I/P.

Type WM CLOSE OFF ΔP AND CV RATINGS

				MAXIMUM ΔP in PSI at close off		
			ACTUATOR CODES		SIGNAL TO ACTUATOR	
VALVE	cv	PLUG	PNEUMATIC		PNEUMATIC	
SIZE	RATING	TRAVEL	ACTUATOR	3–15 PSI	1–17 PSI	0–30 PSI
1/2	4.2	1.8	46 / 4C	50	50	50
3/4	7.2	3/16	46 / 4C	50	50	50
1	12	1/4	46 / 4C	50	50	50
1-1/4	20	5/16	46 / 4C	50	50	50
1-1/2	26	5/16	46 / 4C	50	50	50
2	39	5/16	46 / 4C	50	50	50

NOTE: All Pneumatic Acuators are Direct Acting. Mixing valves have two inlets and one outlet. Published numbers are with respect to worst case conditions with zero downsteam pressure and zero upstream pressure on opposing port. A 50psi limit is imposed for trim life considerations.

Sizing reference

STEAM TABLE

Steam Pressure PSIG	Temp. °F	Temp. °C	Sensible Heat BTU/ Ib.	Latent Heat BTU/lb.	Total Heat BTU/ Ib.
0	212	100	180	971	1151
10	239	115	207	952	1159
25	266	130	236	934	1170
50	297	147	267	912	1179
75	320	160	290	896	1186
100	338	170	309	881	1190
125	353	178	325	868	1193
150	365	185	339	858	1197
200	387	197	362	838	1200
250	406	208	381	821	1202
300	422	217	399	805	1204
400	448	231	438	778	1216
500	470	243	453	752	1205
600	489	254	475	729	1204

RECTANGULAR TANK CAPACITY IN GALLONS

 $\begin{array}{l} \mbox{Gallons} = & \frac{\mbox{Height x Width x Length (inches)}}{230} \\ \mbox{or} \\ \mbox{Gallons} = & \mbox{H x W x L(ft.) x 7.5} \end{array}$

CIRCULAR TANK STORAGE CAPACITY IN GALLONS

 $\begin{array}{l} \mbox{Storage} = 6D^2 \ x \ L \ (\mbox{Gallons}) \\ \mbox{Where:} \quad D = tank \ diameter \ in \ Feet \\ \ L = length \ in \ Feet \end{array}$

Load Sizing Calculations

Heating Water with Steam

Quick Method

Lbs. /hr. =
$$\frac{\text{GPM}}{2} \times \Delta T$$

Precise Method

Lbs. / hr. = $\frac{\text{GPM x 500 x }\Delta\text{T}}{\text{h}_{f_g}}$

Heating or Cooling Water with Water

 $GPM_1 = GPM_2 x \frac{^{\circ}F water_2 \text{ temp rise or drop}}{^{\circ}F water_1 \text{ temp rise or drop}}$

Heating or Cooling Water

$$GPM = \frac{BTU/hr.}{(°F water temp. rise or drop) \times 500}$$

Heating Oil with Steam

Lbs. /hr. = $\frac{\text{GPM}}{4}$ x (°F oil temp. rise)

Heating Air with Water

$$GPM = 2.16 \text{ x} \qquad \frac{CFM \text{ x} (°F \text{ air temp. rise})}{1000 \text{ x} (°F \text{ water temp drop or rise})}$$

Heating Liquids with Steam

Lbs. / hr. =
$$\frac{\text{GPM} \times 60 \times \text{CP} \times \text{W}}{\text{h}_{f_0}} \times \Delta \text{T}$$

Heating Liquids in Steam Jacketed Kettles

Lbs. / hr. =
$$\frac{\text{GPM} \times \text{Cp x S x 8.33}}{h_{f_g} x t} x \text{ DT}$$

General Liquid Heating

Lbs. / hr. =
$$\frac{W \times Cp}{h_{f_q} \times t} \times \Delta T$$

Heating Air with Steam

Lbs. / hr. =
$$\frac{\text{CFM}}{900}$$
 x ΔT

Glossary of Terms

t = Time in Hours

- **Cp** = Specific Heat of Liquid
- **S** = Specific Gravity of Fluid
- **W** = Weight in Lbs.

 $\Delta \mathbf{T} = \mathbf{T}$ Temperature rise of fall in °F

$$hfg =$$
 Latent Heat of Steam

conversion factors

1 lb. Steam/Hr. =	1000 BTU/Hr.
1 Cubic Meter =	265 U.S. Gallons
1 Cubic Foot Water =	62.4 lbs.
1 PSI =	2.04 inches of Mercury
1 PSI =	2.3 feet of Water
1 PSI =	27.7 inches of Water
1 U.S. Gallon Water =	231 Cubic inches
1 U.S. Gallon Water =	8.33 lbs.

593– W		
Size	Order Code	
1/2″	050	
3/4″	075	
1″		
1-1/4″		
1-1/2″	150	
2″		
End Connections Screwed (NPT)		ACCESSORIES SELECT CODE (see page 6)
Bronze/EP Disc		
Bronze/Teflon Disc		
Action	.	ACTUATOR
Mixing	NI	SELECT CODE
		(see below)
Packing		
Teflon V-Ring	S	
EP V-Ring	W	—

Actuator Select code

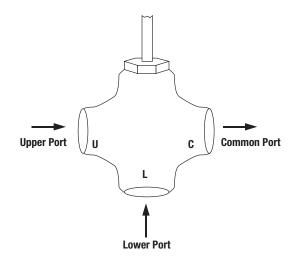
CODE	PNEUMATIC DIAPHRAGM ACTUATORS
46	46 Sq. In., 1" Max Valve Stroke with Standard Springs, adjustable start w/ 7 ~ 12 lb. Fixed span.
4C	46 Sq. In., 1" Max Valve Stroke with Extreme Cycle Springs, adjustable start w/ 7~ 12 lb. Fixed span.

Accessories Select code

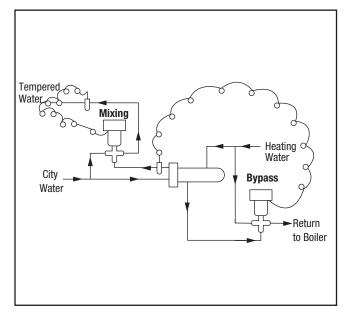
BELLOFRAM 1000 I/P'S <u>Code Description</u> IS 3–15 psi TS 1–17 psi US 3–27 psi CONTROL/AIR TYPE 900X I/P <u>Code Description</u> ES 0.20 psi	UTILITY POSITIONER AND I/PCodeDescriptionBS4-20 mAUTILITY POSITIONERCodeDescriptionPS3-15 psiRS3-9 psiSS9-15 psi	NO ACCESSORIES <u>Code Description</u> OS No accessories
ES 0-30 psi	·	

I/P Transducers

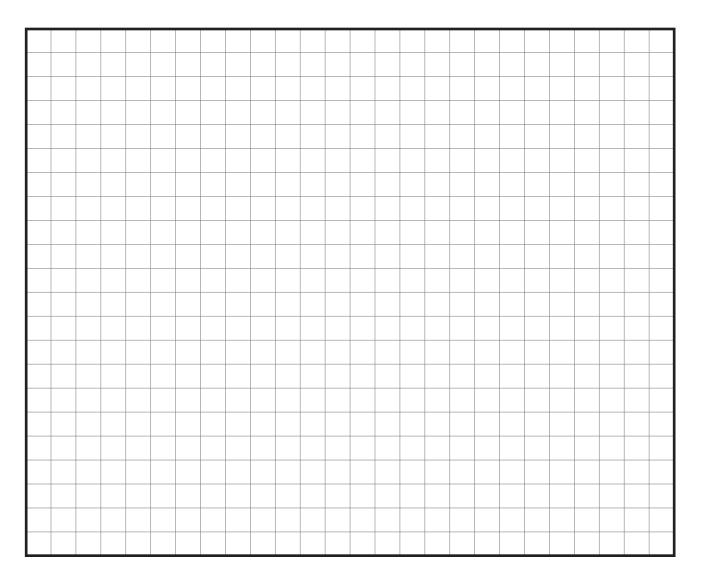
The "standard" 3–15 psi signal was originally designed as a transmission signal, not a valve actuation signal. Unbalanced control valves have their operational limits lowered when forced to operate with this 3–15 psi signal. The Fluid Controls Institute (in Standard 87-2) has recommended that a 1–17 psi air signal range be used when directly actuating a control valve without a positioner. Powers concurs with this recommendation, and therefore, offers a 1–17 psi I/P transducer and a 0–30 psi I/P transducer for maximum close-off. 3–15 psi I/P transducers should be used in conjunction with positioners.


Positioners

Positioners are used for one or more of the following reasons:


- 1) split range valves.
- 2) To eliminate unwanted valve movement caused by line pressure variations
- 3) To minimize the effects of "stick-slip"
- 4) To speed response time and/or
- 5) To increase close-off rating when I/Ps are used.

Port Layout


Upper port is fail-closed on pneumatic diaphragm actuators and typically plumbed as the "hot" port in temperature mixing applications.

Calculation/Sketch Area

Considerations:	
Medium:	
Capacity:	
Inlet Pressures:	
Pressure Drop:	
Temp.: (Packing):	
Fail Safe:	

For more information on FLOWRITE II® or other quality Powers products, visit us at our website www.watts.com.

Pneumatic Temperature Controllers

Temperature Regulators

Mixing Valves

Control Valves

