Submittal Package

Engineering Specification, Installation, Operation and Maintenance Series LF985GD / LF685GD

Deep Well Pump Control Valve

Sizes: 6" to 24"

A WARNING

Read this Manual BEFORE using this equipment. Failure to read and follow all safety and use information

can result in death, serious personal injury, property damage, or damage to the equipment.

Keep this Manual for future reference.

A WARNING

Local building or plumbing codes may require modifications to the information provided. You are required to consult the local building and plumbing codes prior to installation. If the information provided here is not consistent with local building or plumbing codes, the local codes should be followed. This product must be installed by a licensed contractor in accordance with local codes and ordinances.


A WARNING

Need for Periodic Inspection/Maintenance: This product must be tested periodically in compliance with local codes, but at least once per year or more as service conditions warrant. All products must be retested once maintenance has been performed. Corrosive water conditions and/or unauthorized adjustments or repair could render the product ineffective for the service intended. Regular checking and cleaning of the product's internal and external components helps assure maximum life and proper product function.

NOTICE

For Australia and New Zealand: Pipeline strainers should be installed between the upstream shutoff valve and the inlet of the backflow preventer.

It's important that this device be tested periodically in compliance with local codes, but at least once per year or more as service conditions warrant. If installed on a fire sprinkler system, all mechanical checks, such as alarm checks and backflow preventers, should be flow tested and inspected internally in accordance with NFPA 13 and NFPA 25.

LF985GD

Table of Contents

Page

Engineering Specifications

ACV Schematic
Basic Valves
Standard Components7
Optional Components
Installation, Operation and Maintenance
Installation
Valve Servicing Dimensions
Commissioning the Deep Well Pump Control
ACV Maintenance Schedule 16
Troubleshooting Guide
Valve Disassembly Instructions

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

A WATTS Brand

Engineering Specification

LEAD FREE

Series LF985GD

Deep Well Pump Control Valve

Full Port Ductile Iron Dual Chamber Valve

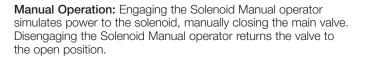
Features

- Installed on branch of tee off main pumping header
- Normally open construction
- Discharges to atmosphere on pump start-up
- Closes slowly diverting pressure into system during pumping cycle
- Opens slowly on pump shut-off
- Limit Switch turns pump off when valve is fully open
- Adjustable Opening and Closing Speed
- Solenoid equipped with Manual Operator

Standard Components

- 1 Main Valve (900GD Dual Chamber)
- 2 Limit Switch
- 3 4-Way Solenoid
- 4 Adjustable Opening Speed
- 5 Adjustable Closing Speed
- Y Y-Strainer
- X Isolation Cocks

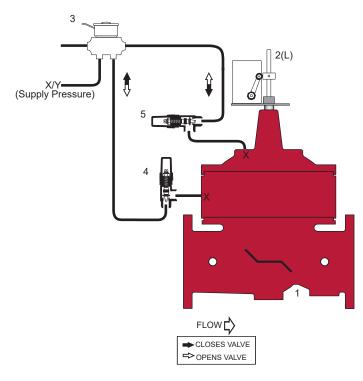
Options and Accessories


O L - Dual Limit Switch

Operation

The Deep Well Pump Control Valve is designed to minimize the surges associated with the starting and stopping of well pumps. The valve slowly opens and closes as required to control pumping related surges. The pump starts and stops against an open valve.

Pump start up: When the pump is signaled to start, the 4-Way Solenoid is energized and directs fluid and pressure into the cover chamber (above the diaphragm), and relieves fluid and pressure from the power chamber (below the diaphragm). The fluid and pressure relieved from the cover chamber is vented to atmosphere or available floor drain. The valve closes at an adjustable rate, gradually admitting pumping pressure into the distribution system. Rate of valve closure is controlled by the adjustable closing speed control, which restricts the speed at which fluid and pressure evacuate the power chamber. The valve remains closed during the pumping cycle.


Pump shutdown: When the pump is signaled to shut-off, the 4-Way Solenoid is de-energized, and directs fluid and pressure into the power chamber (below the diaphragm), and relieves fluid and pressure from the cover chamber (above the diaphragm). The fluid and pressure relieved from the cover chamber is vented to atmosphere or available floor drain. The valve opens at an adjustable rate, gradually reducing pumping pressure, allowing the system check valve to slowly close. Rate of valve opening is controlled by the adjustable opening speed control, which restricts the speed at which fluid and pressure evacuate the cover chamber. When the valve reaches the full open position, the limit switch is actuated, turning the pump off.

*The wetted surface of this product contacted by consumable water contains less than 0.25\% of lead by weight.

NOTICE

The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.

M Series Basic Valves

Deep Well Pump Control Valve

Full Port Ductile Iron Dual Chamber Basic Valve

This Ames ACV is a full port, dual chamber basic valve that incorporates a one-piece disc and diaphragm assembly. This assembly is the only moving part within the valve, allowing it to open or close as commanded by the pilot control system.

When pressure is applied to the upper diaphragm chamber and released from the lower diaphragm chamber, the valve travels to a closed position. When pressure is applied to the lower diaphragm chamber and released from the upper diaphragm chamber the valve travels to a full open position. When pressure is balanced between the upper and lower diaphragm chambers, the valve will hold an intermediate position until commanded to modulate open or closed by the pilot control system.

Ames ACV Main Valves are Lead Free. The Ames ACV piloting system contains Lead Free* components, ensuring all of our configurations are Lead Free compliant.

Globe Pattern Dual Chamber Basic Valve (900GD) Angle Pattern Dual Chamber Basic Valve (900AD)

Standard Materials

Body and Cover:	Ductile Iron ASTM A536
Coating:	NSF Listed Fusion Bonded Epoxy Lined and Coated
Trim:	316 Stainless Steel
Elastomers:	Buna-N (standard) EPDM (optional) Viton™ (optional)
Nut, Spring and Stem:	Stainless Steel
Anti-Scale (Optional):	Xylan Coated Stem and Seat

Viton™ is a trademark of The Chemours Company FC, LLC

Operating Pressure

Threaded = 400psi (27.6 bar) 150# Flanged = 250psi (17.2 bar) 300# Flanged = 400psi (27.6 bar) Grooved End = 400psi (27.6 bar)

Operating Temperature

Buna-N: 160°F (71°C) Maximum EPDM: 300°F (140°C) Maximum Viton™: 250°F (121°C) Maximum Epoxy Coating**: 225°F (107°C) Maximum ** Valves can be provided without internal epoxy coating consult factory

Basic Valve Body Options

Globe Flanged

Angle Flanged

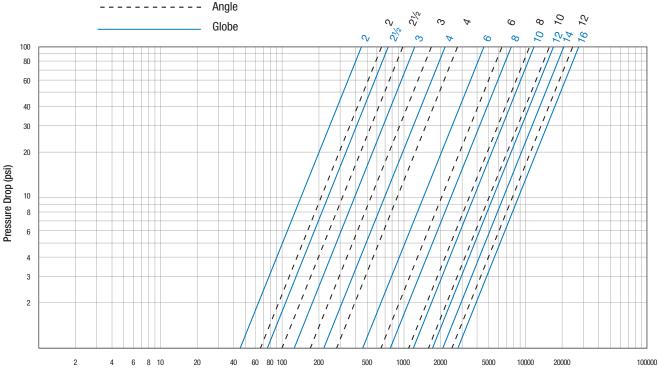
Globe Grooved End

Angle Grooved End

Globe Threaded

Angle Threaded

Flow Data


Valve Size - Inches	2	21⁄2	3	4	6	8	10	12	14	16
Maximum Continuous Flow Rate Gpm (Water)	210	300	485	800	1850	3100	5000	7000	8500	11100
Flow Rate Gpm (Water) Maximum Intermittent Flow Rate Gpm (Water)	265	390	590	1000	2300	4000	6250	8900	10800	14100
Minimum Flow Rate Gpm (Water)	6	9	15	16	17	25	55	70	190	400
> Factor GPM (Globe)	48	75	112	188	387	764	1215	1734	2234	3131
Factor GPM (Angle)	57	91	125	207	571	889	1530	1945		

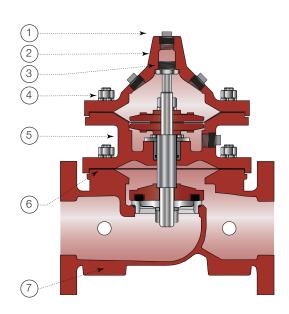
• Maximum continuous flow based on velocity of 20 ft. per second.

- Maximum intermittent flow based on velocity of 25 ft. per second.
- Minimum flow rates based on a 20-40 psi pressure drop.
- The C_v Factor of a value is the flow rate in US GPM at 60°F that will cause a 1psi drop in pressure.
- C_v factor can be used in the following equations to determine Flow (Q) and Pressure Drop (ΔP):

Q (Flow) = $C_v \sqrt{\Delta P}$ ΔP (Pressure Drop) = $(Q/C_v)^2$

- The C_v factors stated are based upon a fully open valve.
- Many factors should be considered in sizing control valves including inlet pressure, outlet pressure and flow rates.
- For sizing questions including cavitation analysis consult Watts with system details.

Flow Rate - Gallons per minute (Water)


Valve Cover Chamber Capacity

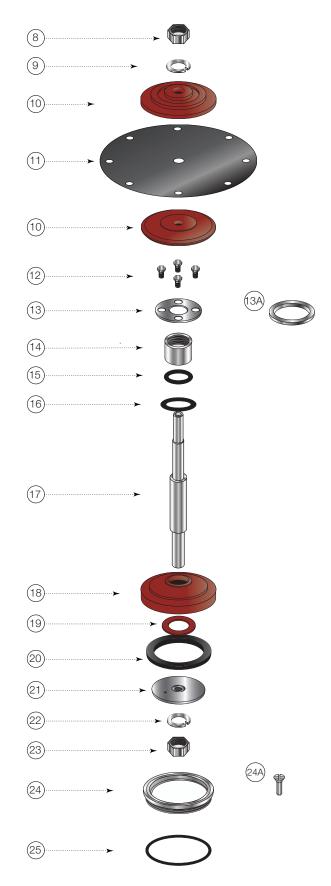
Valve Size (in)	2	21/2	3	4	6	8	10	12	14	16
fl.oz.	4	10	16	22	70					
U.S. Gal						1¼	21⁄2	4	6½	91⁄2

Valve Travel

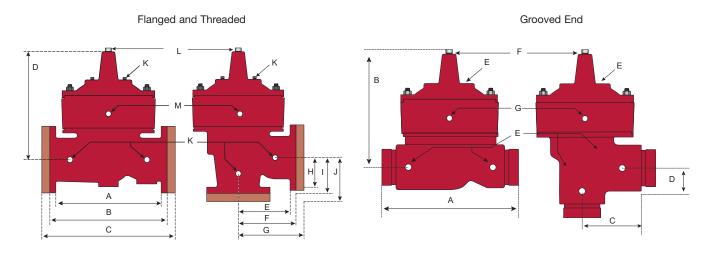
Valve Size (in)	2	21⁄2	3	4	6	8	10	12	14	16
Travel (in)	1⁄2	5⁄8	3⁄4	1	1½	2	21⁄2	3	3½	4

Basic Valve

ITEM	DESCRIPTION	MATERIAL
1	Pipe Plug	Lead Free Brass
2	Cover	ASTM A536 65-45-12 Epoxy Coated Ductile Iron
3	Cover Bearing	ASTM A276 304 Stainless Steel
4	Stud with Cover Nut and Washer	ASTM A570 Gr.33 Zinc Plated Steel
5	Upper Body	ASTM A536 65-45-12 Epoxy Coated Ductile Iron
6	Gasket Seal	Buna-N (Nitrile)
7	Body	ASTM A536 65-45-12 Epoxy Coated Ductile Iron
8	Stem Nut	ASTM A276 304 Stainless Steel
9	Lock Washer	ASTM A276 302 Stainless Steel
10	Diaphragm Washer	ASTM A536 65-45-12 Epoxy Coated Ductile Iron
11	Diaphragm *	Buna-N (Nitrile)
12	Inner Bearing Bolts** (3" and Smaller)	ASTM A276 304 Stainless Steel
13	Inner Bearing Retainer** (3" and Smaller)	ASTM A276 302 Stainless Steel
13A	Bearing Retaining Ring** (4" and Larger)	ASTM A276 302 Stainless Steel
14	Inner Bearing	ASTM A276 304 Stainless Steel
15	O-ring *	Buna-N (Nitrile)
16	O-ring *	Buna-N (Nitrile)
17	Stem	ASTM A276 304 Stainless Steel
18	Disc Retainer	ASTM A536 65-45-12 Epoxy Coated Ductile Iron
19	Spacer Washer *	NY300 Fiber
20	Disc *	Buna-N (Nitrile)
21	Disc Guide	ASTM A743 CF8M (316) Stainless Steel
22	Lock Washer	ASTM A276 304 Stainless Steel
23	Stem Nut	ASTM A276 304 Stainless Steel
24	Seat Ring***	ASTM A743 CF8M (316) Stainless Steel
24A	Seat Screw*** (8" and Larger)	ASTM A276 304 Stainless Steel
25	Seat Gasket *	Buna-N (Nitrile)


* Contained in Main Valve Repair Kit

**4 inch and larger valves do not require Bearing Bolts


***Note: 6 inch and smaller valves, Seat Ring is threaded

NOTICE

Installation: If unit is installed in any orientation other than horizontal (cover up) OR extreme space constraints exist, consult customer service prior to or at the time of order.

Dimensions

Flanged and Threaded Dimensions

Valve Size	Globe 1	Thread	Globe	150#	Globe	300#	Cove Cen		Angle	Thread	Angle	150#	Angle	300#	Angle [·]	Thread	Angle	150#	Angle	300#	Port Size NPT	Port Size NPT	Port Size NPT	Ship Weig	ping Jhts*
	A	4	E	3	(2	C)		E		F	(à	H	ł			.	J	K	L	М		
in.	in.	тт	in.	mm	in.	mm	in.	тт	in.	mm	in.	mm	in.	тт	in.	тт	in.	тт	in.	тт	in.	in.	in.	lbs.	kgs.
6			20	508	21	533	181/16	468			10	254	10½	267			6	152	6½	165	3⁄4	3⁄4	3⁄4	340	154
8			25%	645	26%	670	21¾	554			12¾	324	13¼	337			8	203	8½	216	1	1	1	665	302
10			29¾	756	311/8	791	23%	594			14%	378	15%16	395			8%	219	95⁄16	237	1	1	1	980	445
12			34	864	35½	902	295⁄16	745			17	432	17¾	451			13¾	349	14½	368	1	1¼	1	1720	780
14			39	991	401⁄2	1029	33	838													1	1½	1	2600	1180
16			41%	1051	431⁄2	1105	35	889													1	2	1	3300	1497

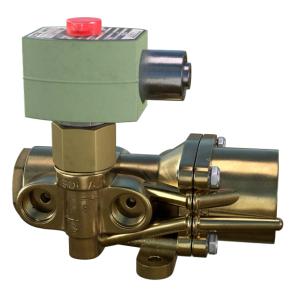
Grooved End Dimensions

Valve Size	Globe G	Grooved	Cover To	Cover To Center		Angle Grooved		Angle Grooved		Angle Grooved Port Size (npt)		Port Size (npt)	Port Size (npt)	Shipping	Weights*
	I	1	I	3	(C	[)	E	F	G				
in.	in.	тт	in.	mm	in.	тт	in.	mm	in.	in.	in.	lbs.	kgs.		
6	20	508	13%	340					3⁄4	3⁄4	1	420	191		
8	25%	645	16	406					1	1	1	845	384		

Model S4W 3-Way Solenoid

Size: 1/8" – 1/2" NPT

Model S4W are pilot system 4-way solenoids. The solenoids can control valves independently or in combination with other control circuit pilots or accessories. Product is available with a wide range of options including: voltage (24VDC, 24VAC or 120VAC), and a range of enclosures (general service to watertight to explosion proof).


Model S4W Back View showing Ports A and B

Normal Position

Actuated Position

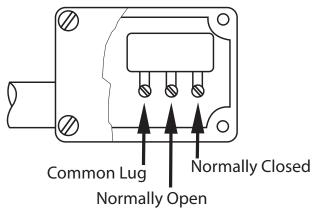
Model S4W Front View showing Ports P and E

Specifications

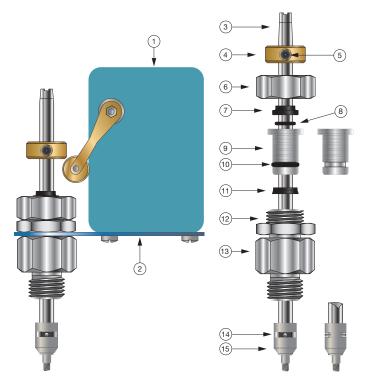
Body Material:	Brass (standard)***
Elastomers:	Nitrile (standard) EPDM (optional) Viton™ (optional)
Voltage:	24VDC, 24VAC or 120VAC
Enclosure:	General Purpose – NEMA 4 (standard) Explosion Proof – NEMA 6, 6P, 7, 9 (optional)
Action:	4-Way Actuation

**Solenoid Action only. Main valve action (energize-to-open or energize-to-close) is dependent on the particulars of the pilot system.

***Brass solenoids are not lead free and it is illegal to use them in potable services in the United States such as drinking water, handwashing, food preparation, and dishwashing. However, brass solenoids may be used as a replacement component in a lead free Watts ACV main valve, as the wetted surface of a lead free Watts ACV main valve including installed brass solenoids contains less than 0.25% of lead by weight.


Viton™ is a trademark of The Chemours Company FC, LLC

LEAD FREE*


Model 51 Single Limit Switch

The Model 51 Single Limit Switch provides visual indication of valve position, as well as remote electrical indication of "valve open" or "valve closed". The single pole double throw Micro-Switch can be connected to open or close an electrical circuit when the valve opens or closes.

The adjustable collar is normally set to contact the trip arm when the main valve is closed. The collar can be positioned on the stem by loosening the set-screw to actuate the switch at the desired point of valve travel.

Single Pole Double Throw Switch

Model LF51

Specifications

Body Material:	Stainless Steel
Elastomers:	Buna-N (standard) EPDM (optional) Viton™ (optional)
Enclosure:	NEMA 1, 3, 4 and 13 General Purpose (standard) NEMA 1,7 and 9 Explosion Proof (optional)
Electrical:	Form C SPDT Switch 15 amp. 125, 250 or 480 VAC ½ amp. 125 VDC ¼ amp. 250 VDC ½" Conduit Connection

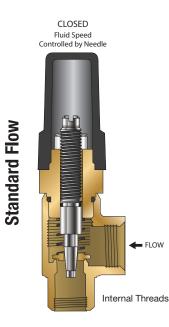
Viton™ is a trademark of The Chemours Company FC, LLC

*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

Parts List

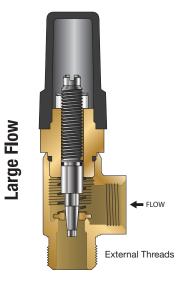
Item	Description
1	Limit Switch
2	Bracket
3	Stem
4	Trip collar
5	Set Screw
6	Сар
7	Wiper Ring*
8	0-Ring*
9	Guide
10	0-Ring*
11	Polypak*
12	Locknut
13	Body
14	Pin
15	Coupling
	*Included in Penair Kit

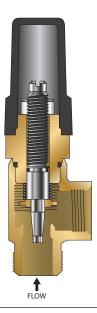
*Included in Repair Kit



Model LFFC

Flow Control


Size: Standard Flow - 1/2" MNPTx 3/8" FNPT High Flow - ½" MxF NPT


A Flow Control is an adjustable device used for tuning valve performance. It can be installed to either control the opening or closing the speed of the automatic control main valve. When the flow is in the direction of the needle the flow control is an adjustable restriction. In the free flow direction the seat moves out of the flow path to all unrestricted flow.

Large Flow Control

Standard Flow Control

Specifications

Size:	Standard Flow - ½" MNPT x ¾" FNPT High Flow - ½" MxF NPT
Body Material:	Lead Free Brass Stainless Steel (optional)
Seat:	Lead Free Brass
Needle:	Stainless Steel (304)
Elastomers:	Buna-N (standard)

*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.



Model LF60-1

Y-Pattern Strainer

Size: 1/4" - 3/4" NPT

Model LF60-1 Y-Pattern Strainers are used to filter the fluid passing through the pilot circuit, and provide protection to pilot circuit speed controls and pilots. The filter element can be accessed for cleaning by removing the clean-out cap, or may be cleaned by installing an optional "blow-down" ball valve.

Model LF60-1

Specifications

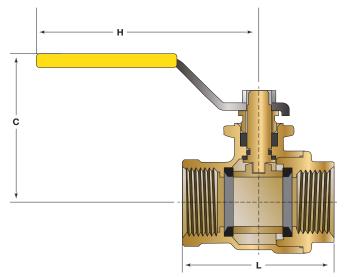
Body Material:	Lead Free Copper Silicon Alloy CF8M (316) Stainless Steel (optional)
Retainer Cap:	Lead Free Copper Silicon Alloy
Cap Gasket:	EPDM
Pressure Rating:	400psi (27.6 bar)
Filter Element:	304 Stainless Steel
Mesh Options:	60 Mesh (standard) 100 Mesh (optional)

*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

Dimensions

SIZE		WEIGHT				
	A		E	В		
in.	in	mm	in	mm	lbs.	kgs.
1⁄4	211/16	68	1 11/16	43	1.7	0.77
3⁄8	2 ¹¹ ⁄16	68	1 11/16	43	1.7	0.77
1/2	3	76	2	51	1.7	0.77
3⁄4	35⁄16	84	25⁄16	59	1.7	0.77

Model BV


Ball Valve

Size: 1/4" - 1" NPT

Model BV Ball Valves are used in pilot lines to provide a positive shutoff in any override or maintenance situation for simple trouble shooting. This 2-piece, full port valve features: bottom loaded stems, PTFE seats and packing.

Lead Free Ball Valve

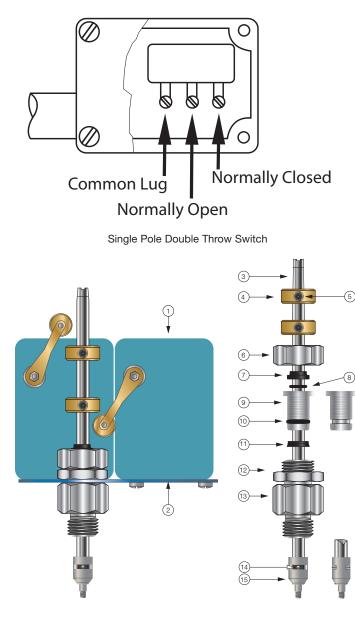
Size		We	ight					
	C		ŀ	1	L			
in.	in.	mm	in.	тт	in.	тт	lbs.	kg.
1⁄4	1 ¹³ ⁄16	46	37⁄16	87	1 3⁄4	45	0.4	0.2
3⁄8	1 ¹³ ⁄16	46	31/16	87	1 3⁄4	45	0.4	0.2
1/2	1 ¹³ ⁄16	46	37⁄16	87	1 ¹⁵ ⁄16	50	0.4	0.2
3⁄4	2¼	57	4	101	25⁄16	59	0.8	0.3

Specifications

Standard Material:	Copper Silicon Alloy Body and Adaptor Chrome Plated Ball
Optional Material:	Stainless Steel Housing, Body and Adaptor Stainless Steel Ball
Pressure Rating:	600psi (41 bar) Non Shock
Temp Rating:	-40°F - 400°F

*The wetted surface of this product contacted by consumable water contains less than 0.25\% of lead by weight.

ACV Options and Accessories - Series LF985GD


Model 51-1

Dual Limit Switch

Size: 2" - 8" NPT

The Model 51-1 Dual Limit Switch provides visual indication of valve position, as well as remote electrical indication of "valve open" and "valve closed". The single pole double throw Micro-Switches can be connected to open or close an electrical circuit when the valve opens or closes.

The adjustable collars are normally set to contact the trip arms to indicate "valve open" and "valve closed". The collars can be positioned on the stem by loosening the set-screws to actuate the switches at the desired point of valve travel.

Model LF51-1

Specifications

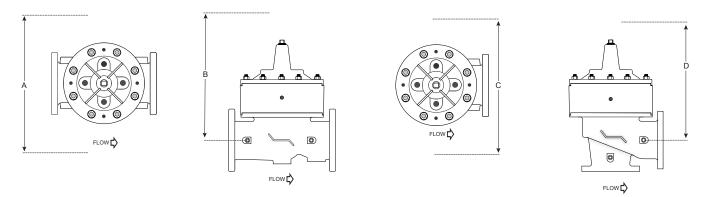
Body Material:	Stainless Steel
Elastomers:	Buna-N (standard) EPDM (optional) Viton™ (optional)
Enclosure:	NEMA 1, 3, 4 and 13 General Purpose (standard) NEMA 1,7 and 9 Explosion Proof (optional)
Electrical:	Form C SPDT Switch 15 amp. 125, 250 or 480 VAC ½ amp. 125 VDC ¼ amp. 250 VDC ½" Conduit Connection
Viton™ is a trademar	k of The Chemours Company FC, LLC

*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

Parts List

ltem	Description	
1	Limit Switch	
2	Bracket	
3	Stem	
4	Trip collar	
5	Set Screw	
6	Сар	
7	Wiper Ring*	
8	O-Ring*	
9	Guide	
10	O-Ring*	
11	Polypak*	
12	Locknut	
13	Body	
14	Pin	
15	Coupling	

*Included in Repair Kit


Installation, Operation and Maintenance - Series LF985GD

Installation

Start-up of an automatic control valve requires that proper procedures be followed. Time must be allowed for the valve to react to adjustments and the system to stabilize. The objective is to bring the valve into service in a controlled manner to protect the system from damaging over-pressure.

- 1. Prior to installation, flush line to remove debris.
- 2. Install valve so the flow arrow matches flow through the line, and gauges to monitor valve inlet and outlet pressures.
- 3. Install isolation valves upstream and downstream of the main valve.
- 4. Provide adequate clearance for valve servicing and maintenance. Refer to valve servicing dimensions on next page. Avoid installing valves 6" and larger in the vertical position (main valve stem horizontal). Automatic Control Valves (ACVs) are designed for horizontal in-line installation, with the cover facing up (main valve stem vertical). Slow operation or premature stem and guide wear may occur if valve is not installed according to factory recommendations. Consult factory for detailed engineering review prior to ordering if valve is to be installed other than horizontally in-line.
- 5. If valve is equipped with a pilot control system, extra precautions should be made during installation to protect the piping circuit from damage. Only remove the pilot control system from the valve if necessary. Tubing and fittings should be kept clean and replaced exactly as removed. Consult appropriate hydraulic schematic to ensure proper re-assembly.
- 6. Connect solenoid wiring leads to desired switching device, using safe, standard electrical practices.
- 7. Wire the limit switch contacts to the proper relay connections, using safe, standard electrical practices. Adjust the limit switch collar to the approximate make/break contact position.
- 8. Field install remote operating pressure line, minimum recommended size ½", to the downstream side of the system check valve.
- 9. After installation, vent entrapped air from valve cover and pilot system by following instructions in the **Commissioning Deep Well Pump Control** section on the following page.

Valve Servicing Dimensions

The following tables detail the recommended minimum valve servicing dimensions.

Globe												
Size (in)	2	21⁄2	3	4	6	8	10	12	14	16	20	24
A (in)	20	22	22	24	32	34	38	44	48	52	56	56
B (in)	20	22	22	25	36	38	40	44	48	50	50	50
D (III)	20			20	00	00	10		10	00	00	

Angle

Size (in)	2	21⁄2	3	4	6	8	10	12	14	16
C (in)	20	22	22	24	32	34	38	44	48	52
D (in)	20	22	22	25	36	38	40	44	48	50

Commissioning Deep Well Pump Control

STEP 1

NOTE: System needs to be filled, pressurized, and ready for flow.

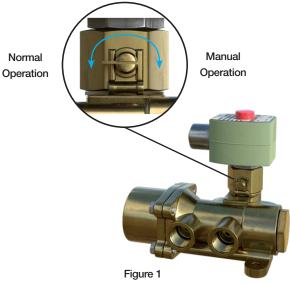
Pre-set pilots as noted:

Opening and Closing Speed – Prior to pump start, actuate manual operator on solenoid to enable diaphragm assembly to stroke open and closed. Observing the limit switch stem indicator, monitor rate of opening and closing speed. Adjust accordingly per application requirements.

Note: Cycle diaphragm multiple times to confirm rate of movement and remove excess air trapped within the cover chambers (See Figure 1 Below).

To increase the rate of opening/closing, turn the adjustment screws on the speed controls OUT, counterclockwise. In decrease the rate of opening/closing, turn the adjustment screws on the speed controls IN, clockwise.

STEP 2


Prior to pump start, energize the solenoid to confirm connection to power source.

STEP 3

De-energize the solenoid prior to initial pump start.

STEP 4

Energize the solenoid at pump start to close the main valve, checking that the main valve closes.

4-Way Solenoid

Installation, Operation and Maintenance - Series LF985GD

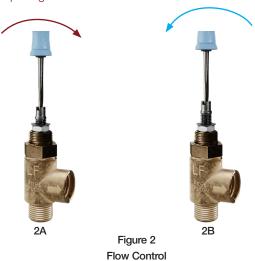
STEP 5

Closing Speed Flow Adjustment (located on the lower chamber): While free flow goes into the upper chamber, the closing speed flow control restricts flow out of the lower chamber of the main valve.

If valve closing is too slow, turn the adjustment screw OUT, counterclockwise, increasing the rate of closing (See Figure 2B).

STEP 6

When pump demand is satisfied, pump will continue to operate as the main valve opens. To open main valve, de-energize the solenoid, checking that the main valve opens.


STEP 7

Opening Speed Needle Valve Adjustment (located on the upper chamber): While free flow goes into the lower chamber, the Opening speed flow control restricts flow out of the upper chamber of the main valve.

If valve opening is too slow, turn the adjustment screw OUT, counterclockwise, increasing the rate of opening.

If valve opening is too quick, turn the adjustment screw IN, clockwise, decreasing the rate of opening (See Figure 2A). Clockwise to DECREASE rate of opening

Counterclockwise to INCREASE the rate of opening

STEP 8

At valve full open position deep well pump will stop. Adjust limit switch collar to final position to ensure positive actuation of limit switch electrical contact, if necessary, by sliding up/down to location (See Figure 3).

Figure 3 Limit Switch in Open Position

Automatic Control Valve Maintenance Schedule

To ensure peak performance and longevity of your automatic control valve, Watts/Ames recommends following the below standard maintenance schedule.

- Monthly Maintenance
 - Visual inspection of valve(s) for leaks
 - Inspect for proper operation(s); exercise valve.

• Quarterly Maintenance

- Conduct monthly inspection.
- Validate/Re-establish necessary setpoints of controls/pilots.

Annual Maintenance

- Conduct monthly & quarterly inspections.
- Inspect & clean all strainers.
- Inspect valve coating, touch up as required.

• 3-5 Year Maintenance

- Conduct monthly, quarterly, & annual maintenance.
- Inspect & replace valve elastomers (diaphragm, O-rings, valve/pilot seats)
- Re-establish necessary set points of controls/pilots.

Troubleshooting Guide

A WARNING

Warning: The valve cannot be serviced under pressure. Upstream and downstream Isolation Valves must be installed to protect system piping. Accurate diagnosis and troubleshooting requires the valve to open fully, and may subject downstream piping and equipment to high pressure and/or flow rates. The downstream Isolation Valve should be kept closed while diagnosing the valve.

Extreme caution should be used while performing the troubleshooting techniques listed below.

Recommended tools for diagnosis: (3) PRESSURE GAUGES, installed to monitor the inlet pressure, outlet pressure, and cover chamber pressure. If included, a POSITION INDICATOR should be installed to visually assess the position of the disc & diaphragm assembly.

Test 1: Diaphragm Seal Test

- 1. Close upstream & downstream isolation valves. Close pilot isolation valves or remove pilot control tubing to isolate valve cover from incoming fluid & pressure. Remove uppermost cover plug, test cock, or limit switch.
- 2. With the valve cover chamber vented to atmosphere, partially open the upstream isolation valve, allowing incoming pressure to lift the disc & diaphragm assembly. A volume of water will be displaced from the cover chamber as the valve opens; consult valve specification sheets for approximate cover capacity. A continuous flow of water from the open port indicates a damaged diaphragm or loose disc & diaphragm assembly. Disassemble valve and replace diaphragm or tighten disc & diaphragm assembly.

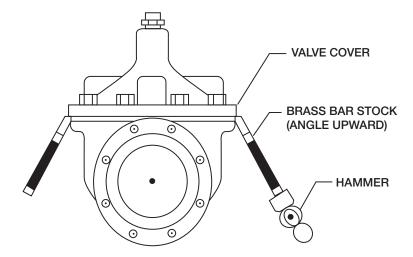
Test 2: Seat Seal Test

- 1. Close downstream isolation valve and install pressure gauges on an open inlet and outlet port of main valve.
- 2. Open upstream isolation valve to allow pressure on to the valve cover. Allow valve to fully close.
- 3. Monitor downstream pressure gauge; reading should hold steady below incoming pressure. If pressure on downstream side rises to match upstream pressure, leakage is occurring through the seat of the main valve. Disassemble valve, inspect and repair/replace any required parts.
 - a. If gauge pressure rises to match outlet pressure (downstream of closed isolation valve) yet remains below inlet pressure, the isolation valve may be leaking as opposed to main valve seat.

Test 3: Freedom of Movement/Valve Travel Test

- 1. Close upstream and downstream isolation valves. Install valve position indicator.
- 2. Partially open upstream isolation valve and allow cover to fill with fluid & pressure, closing the valve fully. Mark the position indicator's full closed position.
- 3. Isolate cover chamber from receiving fluid and pressure by closing isolation valves or removing control tubing.
- 4. Carefully vent cover chamber to atmosphere by opening test cock or removing a cover plug. Observe the valve position indicator as the valve travels to the full-open position. The disc & diaphragm assembly should move freely from fully closed to fully open position without binding or "grabbing" at any point during its movement.
 - a. The disc & diaphragm assembly may momentarily "hesitate" while travelling from fully closed to fully open position

 this is a normal characteristic of diaphragm operated control valves, and does not indicate mechanical binding or improper valve operation.
 - b. A continuous discharge of water from the cover chamber after venting to atmosphere indicates leakage past the diaphragm.
- 5. If necessary, disassemble valve and inspect/repair disc & diaphragm assembly.


Troubleshooting Guide

Issue	Possible Cause	Corrective Action	Notes
Main Valve will not open	Closed isolation valves in pilot system.	Check isolation valves, ensure open.	
	Insufficient supply pressure.	Check upstream pressure.	Depending on water source, supply pressure may not be controlled by valve operator.
	Main valve stem assembly corroded/ damaged	Inspect stem assembly, clean/ replace if necessary.	
	Blockage in pilot system.	Inspect & clean any installed pilot system strainers, check orifice/speed controls for blockages.	
	Improperly configured opening speed control.	Adjust opening speed control to verify functionality, adjust as required.	Standard setting for opening speed control is $1\frac{1}{2} - 2\frac{1}{2}$ turns open from full closed position. Can be adjusted in field.
Main Valve will not close	Closed isolation valves in pilot system	Check isolation valves, ensure open.	
	Diaphragm is damaged	Conduct diaphragm seal test, repair and replace if necessary.	
	Main valve stem assembly corroded/ damaged.	Inspect stem assembly, clean/ replace if necessary.	
	Blockage in main valve.	Perform freedom of movement test; if valve does not close, disassemble and remove blockage.	
	Worn/damaged valve seat.	Perform seat sealing check; disassemble and inspect/re- pair seat if required.	
	Improperly configured closing speed control.	Adjust closing speed control to verify functionality, adjust as required.	Standard setting for closing speed control is $1\frac{1}{2} - 2\frac{1}{2}$ turns open from full closed position. Can be adjusted in field.
Solenoid will not actuate	Possible Cause: Low or no voltage	Check voltage at the solenoid connection, insuring that it has the minimum of 85% of the coils rated voltage.	Should be performed by licensed electrician
	Manual operated is engaged	Turn manual operator counter- clockwise to disengage	

Valve Disassembly Instructions

Before undertaking valve disassembly, it is recommended to gather the following tools to aid you during the process:

- Small & large adjustable wrenches
- Screwdriver set
- Machinist fine metal file
- Fine wire brush
- Bench vise
- Basic valve IO&M manual
- Hammer & dull cold chisel
- Heavy-duty ratchet & socket set
- Hexagonal wrench set
- 320 grit/fine Emery cloth
- Appropriate technical bulletins for valve start-up procedures.

- 1. Isolate the valve from line pressure and depressurize it to ensure safe working conditions. Disconnect any electrical connections if so equipped.
- 2. Carefully remove Position Indicator or Limit Switches if equipped. Remove all tubing, fittings, and Control Pilots necessary to easily access and remove the cover. Remove cover nuts and washers.
- 3. Remove the cover. If cover is not free to be removed, loosen it by tapping upward along its outside edge with a dull cold chisel, pictured above.
 - a. Large valves may require the installation of lifting "eye" bolts in order to facilitate cover removal; installation ports are provided on the cover for this purpose.
- 4. Remove the Disc and Diaphragm Assembly from the valve body by lifting straight up.
 - a. Large diameter valves may require a lifting "eye" bolt to be installed in the valve stem accessory threads located on the very top of the valve stem.
- 5. Before removing Stem Nut, examine stem threads for mineral build-up. Remove deposits with a fine wire brush. Extreme care should be taken not to damage the finish on stem guiding surfaces when disassembling. Avoid applying pipe wrenches to top or bottom stem guide surfaces.
- 6. After removing the Stem Nut, the remainder of the Disc & Diaphragm Assembly should disassemble easily. Polish stem guide surfaces with fine emery cloth to remove any mineral deposits and inspect for excessive wear. Remove any mineral build-up from other components with wire brush or by using a Mineral Dissolving Solution. Inspect parts for wear and replace if necessary.
- 7. Inspect valve seat. If seat is not damaged, removal is not necessary. If it is damaged please contact factory for instructions.
- 8. Replace Seat Disc, Diaphragm and Spacer Washers provided in Main Valve repair kit (refer to Table 2 or 3 for correct repair kit part number). Re-assemble in the reverse order of disassembly.
- 9. Re-Install Disc and Diaphragm Assembly in the valve, taking care not to damage the lower guide area in the center of the valve seat.
- 10. Re-install Cover Spring. Replace Valve Cover and tighten Cover Nuts in a crossing pattern to ensure even distribution. Test the Disc and Diaphragm Assembly for smooth travel by following the Freedom of Movement Test procedure in previous section.
- 11. Test the integrity of the Seat Seal by following the Seat Seal Test procedure in previous section.

Table 2: Full Port Valve (900GD/900AD) Repair Kits

Size (in)	2	21/2	3	4	6	8	10	12	14	16
P/N	0677-21	0677-22	0677-23	0677-24	0677-25	0677-26	Consult Factory	0677-28	0677-29	0677-30

Table 3: Reduced Port Valve (600GD/600AD) Repair Kits

Size (in)	3	4	6	8	10	12	16	20 & 24
P/N	0677-21	0677-23	0677-24	0677-25	0677-26	0677-27	0677-28	0677-30

Limited Warranty: Ames Fire & Waterworks (the "Company") warrants each product to be free from defects in material and workmanship under normal usage for a period of one year from the date of original shipment. In the event of such defects within the warranty period, the Company will, at its option, replace or recondition the product without charge.

THE WARRANTY SET FORTH HEREIN IS GIVEN EXPRESSLY AND IS THE ONLY WARRANTY GIVEN BY THE COMPANY WITH RESPECT TO THE PRODUCT. THE COMPANY MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED. THE COMPANY HEREBY SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The remedy described in the first paragraph of this warranty shall constitute the sole and exclusive remedy for breach of warranty, and the Company shall not be responsible for any incidental, special or consequential damages, including without limitation, lost profits or the cost of repairing or replacing other property which is damaged if this product does not work properly, other costs resulting from labor charges, delays, vandalism, negligence, fouling caused by foreign material, damage from adverse water conditions, chemical, or any other circumstances over which the Company has no control. This warranty shall be invalidated by any abuse, misuse, misapplication, improper installation or improper maintenance or alteration of the product.

Some States do not allow limitations on how long an implied warranty lasts, and some States do not allow the exclusion or limitation of incidental or consequential damages. Therefore the above limitations may not apply to you. This Limited Warranty gives you specific legal rights, and you may have other rights that vary from State to State. You should consult applicable state laws to determine your rights. So FAR AS IS CONSTENT WITH APPLICABLE STATE LAW, ANY IMPLIED WARRANTIES THAT MAY NOT BE DISCLAIMED, INCLUDING THE IMPLIED WARRANTIES OF MARKENTIES THAT MAY NOT BE DISCLAIMED, INCLUDING THE IMPLIED WARRANTIES OF MARKENTIES THAT WITH APPLICABLE STATE LAW, ANY IMPLIED WARRANTIES THAT MAY NOT BE DISCLAIMED, INCLUDING THE IMPLIED WARRANTIES OF MARKENTIES THAT HAT NOT AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO ONE YEAR FROM THE DATE OF ORIGINAL SHIPMENT.

A WATTS Brand

USA: Backflow T: (978) 689-6066 • F: (978) 975-8350 • AmesFireWater.com USA: Control Valves T: (713) 943-0688 • F: (713) 944-9445 • AmesFireWater.com Canada: T: (888) 208-8927 • F: (905) 481-2316 • AmesFireWater.ca Latin America: T: (52) 55-4122-0138 • AmesFireWater.com